Decreased Proliferation Kinetics of Mouse Myoblasts Overexpressing FRG1
نویسندگان
چکیده
منابع مشابه
Decreased Proliferation Kinetics of Mouse Myoblasts Overexpressing FRG1
Although recent publications have linked the molecular events driving facioscapulohumeral muscular dystrophy (FSHD) to expression of the double homeobox transcription factor DUX4, overexpression of FRG1 has been proposed as one alternative causal agent as mice overexpressing FRG1 present with muscular dystrophy. Here, we characterize proliferative defects in two independent myoblast lines overe...
متن کاملFHL1 Reduces Dystrophy in Transgenic Mice Overexpressing FSHD Muscular Dystrophy Region Gene 1 (FRG1)
Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal-dominant disease with no effective treatment. The genetic cause of FSHD is complex and the primary pathogenic insult underlying the muscle disease is unknown. Several disease candidate genes have been proposed including DUX4 and FRG1. Expression analysis studies of FSHD report the deregulation of genes which mediate myoblast differen...
متن کاملAltered Tnnt3 characterizes selective weakness of fast fibers in mice overexpressing FSHD region gene 1 (FRG1).
Facioscapulohumeral muscular dystrophy (FSHD), a common hereditary myopathy, is characterized by atrophy and weakness of selective muscle groups. FSHD is considered an autosomal dominant disease with incomplete penetrance and unpredictable variability of clinical expression within families. Mice overexpressing FRG1 (FSHD region gene 1), a candidate gene for this disease, develop a progressive m...
متن کاملProliferation kinetics of recruited cells in a mouse mammary carcinoma.
Solid tumors contain populations of proliferating (P) and quiescent (Q) cells. Shifting between these populations occurs continuously and cells are recruited from quiescence to proliferate (Q-->P) as a result of exogenously applied or endogenous cell depleting stimuli. Direct measurements of the proliferation kinetics of these Q-->P cells in solid tumors are difficult to make because of the muc...
متن کاملBTB-Kelch protein Krp1 regulates proliferation and differentiation of myoblasts.
The BTB-Kelch protein Krp1 is highly and specifically expressed in skeletal muscle, where it is proposed to have a role in myofibril formation. We observed significant upregulation of Krp1 in C2 cells early in myoblast differentiation, well before myofibrillogenesis. Krp1 has a role in cytoskeletal organization and cell motility; since myoblast migration and elongation/alignment are important e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: PLoS ONE
سال: 2011
ISSN: 1932-6203
DOI: 10.1371/journal.pone.0019780